If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2-4n-440=0
a = 2; b = -4; c = -440;
Δ = b2-4ac
Δ = -42-4·2·(-440)
Δ = 3536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3536}=\sqrt{16*221}=\sqrt{16}*\sqrt{221}=4\sqrt{221}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{221}}{2*2}=\frac{4-4\sqrt{221}}{4} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{221}}{2*2}=\frac{4+4\sqrt{221}}{4} $
| 4/7(14x+2)=3x+47 | | 4+2y-3=7y+6-4y | | n÷6=0.87 | | 4v–43=5v–72 | | 5.2g+7=2.2g+16 | | (9/8)^(2x+12)=1 | | (2m)/(7)+(3m)/(14)=1 | | 17×-9=7x+4= | | 6.8g+5=4.8g+13 | | 6^(3x-5)=41 | | 10+4x-2=10+4x | | 3a-18=6a-3a-18 | | 44/5a-82/3a=2/15 | | 12p=2p=14 | | -(8-x)=x-4x+5 | | 6g-16+8g=1-g | | 3x-7=-x/3 | | 2/3(p-12)=(-2p-1)+7 | | 5x+6+9x=26+3x | | 3/z=9/12 | | -37=-7x-3(-4x+4) | | 10x-50=9x+40 | | (14x+4)°C(55°)=51° | | 10x-50=9x+5 | | 5.3g+g=3.3g+15 | | -2(y-6y)+3=-4(3y-y)+4+17y | | 4(3w-2)=8(2w=3) | | 3x+38=3x+38 | | 3.9/5.4=x/1.8 | | 150m-125m+35525=33250+150m | | 145-5p=-11+4p | | 2.5/x=1.25/3.2 |